

Session - 1

ECBC Background and ECBC 2016 development Process & Methodology

Energy Conservation (EC) Act, 2001

- 1. Energy Conservation Act was in acted in 2001
- 2. Specifies powers of Central and State Government.
- 3. Bureau of Energy Efficiency was established under this Act
- 4. As per the Act
 - energy conservation building codes means the norms and standards of energy consumption expressed in terms of per m² of the area wherein energy is used and includes the location of the building
 - **<u>"building"</u>** means any structure or erection (or part), after the rules relating to ECBC have been notified, which is having a connected load of 100kW or contract demand of 120 kVA and above and is
 intended to be used for confinercial purposes

Energy Conservation Building Code 2007

Steering Committee

Chair - Director General, Bureau of Energy Efficiency
Other members - MNRE, MoUD, BIS, CPWD, SDA, USAID, UNDP, IGBC, USGBC, GRIHA
Planned meetings –

Proposed in June 2016
These meetings to continue till the code is ready for notification

Building Envelope

- 1. Chair Dr. N. K. Bansal, Ex Prof IIT Delhi
- 2. Convener Mr. Girja Shankar, Bureau of Energy Efficiency

Members

- 1. Ar. Sanjay Prakash, SHiFt: Studio for Habitat Futures
- 2. Ar. Ashok B. Lall, Ashok B Lall Architects
- 3. Ar. Vinod Gupta, Space Design Consultants
- 4. Mr. Prabhakar Singh, Central Public Works Department
- 5. Ar. Anurag Bajpai, Green Tree
- 6. Dr. Rajan Rawal, Center for Environmental Planning & Technology
- 7. Ms. Mili Majumdar, TERI

CBC Update 2016

- 1. Swiss Agency for Development and Cooperation (SDC)
- 2. French Development Agency Agence Française de Dévelopement (AFD)
- 3. Gesellschaft für Internationale Zusammenarbeit (GIZ)
- 4. Kreditanstalt fur Wiederaufbau (KFW)
- 5. Shakti Sustainable Energy Foundation (SSEF)
- 6. Indo- EU Building Program
- 7. United Nations Environment Programme (UNEP)
- 8. United Nations Development Programme (UNDP)

7 May 2016 - Delhi

ECBC Update 201

Life Cycle Cost Approach

<text><text><text><text><text><list-item><text>

EPI Approach- Bench Marking and Star Rating

The EPI indicates the total energy used in a building every year to the total built up area (air-conditioned or non air-conditioned) and is reported in units of kWh/sq.m/ year

Need of EPI

Component approach is conservative and ignores specific opportunities available at different sites

It also ignores influence of one component, with in a system, over another.

27 May 2016 - Delhi

ECBC Update 2016

Mass wall		
A		
Material (A)	Thickness (mm)	U value range
Brick	230	Lower Limit: 12 mm plaster,
Cement Stabilized earth block	250, 375	230 mm brick, 8 mm plaster:
Fly Ash Brick	200, 300	2.1 W/m ² K
Hollow Concrete Block	200, 300	
Insulated Block	200, 300	Upper Limit: 12 mm plaster,
Autoclaved Aerated Concrete Block	200, 300	200 mm AAC block, 8 mm plaster : 0.63 W/m² K
PACE-D 27 Mág-2016 - Delhi	ECBC Update 2016	53

Single mass wall (external insulation)		
External VB A Internal		
Material (B)	Thickness (mm)	U value range
Extruded polystyrene (XPS)	25, 50, 75, 100	Lower Limit: 12 mm
Expanded polystyrene (thermo Cole)	25, 50, 75, 100	plaster, 25 mm XPS, 230
(EPS)		mm brick, 8 mm plaster :
Polyurethane/ Polyisocyanurate	25, 50, 75, 100	0.73 W/m ² K
		Upper Limit: 12 mm
		plaster, 100 mm
		Polyurethane/
		Polyisocyanurate, 200 mm
		Flyash wall, 8 mm plaster :
PACE-D 27 Mág 2016 - Delhi	ECBC Update 2016	0.21 W/m ² K

Single mass wall (i	Single mass wall (internal insulation)		
R A Internal External			
Material (B)	Thickness (mm)	U value range	
Extruded polystyrene (XPS)	25, 50, 75, 100	Lower Limit: 12 mm	
Expanded polystyrene (thermo Cole) (EPS)	25, 50, 75, 100	plaster, 25 mm bonded mineral wool, 230 mm	
Polyurethane/ Polyisocyanurate	25, 50, 75, 100	brick, 8 mm plaster : 0.81	
Bonded Mineralwool (Rock/ glasswool)	25, 50, 75, 100	W/m ² K Upper Limit: 12 mm plaster, 100 mm Polyurethane/ Polyisocyanurate, 200 mm Fly ash, 8 mm plaster : 0.16	
PACE-D 27 Mág 2016 - Delhi	ECBC Update 2016	W/m²K 55	

Cavity mass wall		
A B Heavy mass at one si	Heavy mass at both side	A B
Material (B)	Thickness (mm)	U value range
Extruded polystyrene (XPS)	25, 50, 75, 100	Lower Limit: 12 mm plaster,
Expanded polystyrene (thermo Cole)	25, 50, 75, 100	230 mm brick, 50 mm Air
(EPS)		gap, 115 mm brick, 8 mm
Polyurethane/ Polyisocyanurate	25, 50, 75, 100	plaster : 1.22 W/m ² K
Bonded Mineralwool (Rock/ glasswool)	25, 50, 75, 100	Upper Limit: 12 mm
Air gap	25, 50 ECBC Update 2016	plaster, 200 mm AAC block, 100 mm Polyurethane/ Polyisocyanurate, 100 mm AAC block, 8 mm plaster : 0.15 W/m ² K

Light weight wall		
Gypsum Board	Lower Limit: 12 mm Board, 25 mm Mine mm Gypsum Board Upper Limit: 12mm Board, 100 mm Poly Polyisocyanurate, 1: Board: 0.19 W/m ²⁰	ral wool, 12 : 1.23 W/m ² K Gypsum rurethane/
Material (B)	Thickness (mm)	U value range
Extruded polystyrene (XPS)	25, 50, 75, 100	Lower Limit: 12 mm
Expanded polystyrene (thermo Cole) (EPS)	25, 50, 75, 100	Gypsum Board, 25 mm bonded mineral wool, 12
Polyurethane/ Polyisocyanurate	25, 50, 75, 100	mm Gypsum Board : 0.96 W/m ² K
Bonded Mineralwool (Rock/ glasswool)	25, 50, 75, 100	W/III K
Air gap	25, 50	Upper Limit: 12mm Gypsum Board, 100 mm Polyurethane/ Polyisocyanurate, 12 mm Gypsum Board: 0.22 W/m2-
PACE-D 27 Mág 2016 - Delhi	ECBC Update 2016	к ⁵⁷

Roof (over deck insulation)		
D C		
Material (C)	Thickness (mm)	
Concrete Slab	150	
Material (D)	Thickness (mm)	U value range
Extruded polystyrene (XPS)	25, 50, 75, 100	Lower Limit: 50 mm brick
Expanded polystyrene (thermo Cole) (EPS)	25, 50, 75, 100	bat coba, 150 mm concrete
Polyurethane/ Polyisocyanurate	25, 50, 75, 100	slab, waterproofing, 25 mm
Brick bat coba	50	plaster: 2.51 W/m ² K
Mud Fuska	75	Upper Limit: 100 mm
		Polyurethane/
		Polyisocyanurate, 150 mm
		concrete slab,
		waterproofing, 25 mm
		plaster: 0.2 W/m ² K
PACE-D 27 Mág92016 - Delhi	ECBC Update 2016	

Roof (under deck insulation)		
Material (C)	Thickness (mm)	
Concrete Slab with brick bat coba	200	
Material (D)	Thickness (mm)	U value range
Extruded polystyrene (XPS)	25, 50, 75, 100	Lower Limit: 50 mm brick
Expanded polystyrene (thermo Cole) (EPS)	25, 50, 75, 100	bat coba, 150 mm concrete
Polyurethane/ Polyisocyanurate	25, 50, 75, 100	slab, waterproofing, 25 mm
Bonded mineral wool	25, 50, 75, 100	plaster: 2.51 W/m ² K
		Upper Limit: 100 mm
		Polyurethane/
		Polyisocyanurate, 150 mm
		concrete slab,
		waterproofing, 25 mm
		plaster: 0.19 W/m ² K
^{PACE-D} 27 ⁻ Ма́у-2016 - Delhi	ECBC Update 2016	59

 Chillers: Water/air Cooled Unitary Air-Conditioners : VRF system Single/ Multi Spilt Unit window AC Pumps Chilled-Water Pump Condenser Water Pump Hot water pumps Air Distribution System : AHU and FCUs Fans - Centrifugal/ Axial Boilers System efficiency Controls System efficiency Controls Matural Ventilation Set points Ducts and pipe insulation Heat recovery and economizers Low energy comfort systems 	Comfort Systems and Controls – Scope		
<u>rans – Centingal Axia</u> New additions are nighlighted	 Water/ air Cooled Unitary Air-Conditioners : <u>VRF system</u> Single/ Multi Spilt Unit window AC Pumps Chilled-Water Pump Condenser Water Pump Hot water pumps Air Distribution System : AHU and FCUs 	 System efficiency Controls Natural Ventilation Set points Ducts and pipe insulation Heat recovery and economizers Low energy comfort systems 	
<u>Cooling, towers</u> ECBC Update 2016 64	 Cooling towors 	Û Û	

Session 2- Code scope and application

Administration and Compliance

Scope

Sizes of Buildings:

Building complexes with

- 1. a connected load of 100 KW, or greater or
- 2. a contract demand of 120 KVA or greater or,

Exemptions:

The provisions of this Code do not apply to:

 Equipment and portions of building systems that use energy primarily for manufacturing processes

Core and Shell Buildings

Core and shell buildings where the developer or owner will only provide the base building and its services. Base building will include common areas, circulation areas, parking, basements, services area, and open site area.

Owner/ Developer shall be responsible for demonstrating compliance for core and shell (C&S) buildings

Mixed Use Development

Mixed use development may be defined as a single building or a group of buildings housing a combination of residential, commercial, business, educational, hospitality and assembly uses.

If residential is less than 10% of total space, whole building needs to be shown compliance with ECBC. If residential is more than 10%, only non-residential part of the building should comply with ECBC.

Whole building - Area Weighted averages should comply with ECBC EPI requirements.

May 2016 - Delhi

ECBC Update 2016

Compliance Documents

• Phase 1-

- Plans and specifications shall show all pertinent data and features of the building, equipment, and systems.
- Sufficient detail to be provided to permit the Authority Having Jurisdiction to verify that the building complies with the requirements of this code.
- Phase 2-
 - Construction verification compliance documentation

ECBC Update 2016

86

Session 3

Building Envelope

Wall (Prescriptive)							
	Composite	Hot and dry	Warm & humid	Temperate	Cold		
ECBC 2007 8 hours	0.44	0.44	0.44	0.44	0.35		
ECBC 2007 24 hours	0.44	0.44	0.44	0.44	0.37		
ECBC 2016 Day time	0.40	0.40	0.40	0.55	0.34		
Office and school < 10,000 m ²	0.63	0.63	0.63	0.63	0.40		
EE building	0.34	0.34	0.34	0.4	0.22		
SEE Building	0.22	0.22	0.22	0.22	0.22		
ECBC 2016 24 hours	0.40	0.40	0.40	0.40	0.34		
EE building	0.34	0.34	0.34	0.34	0.22		
SEE Building	0.22	0.22	0.22	0.22	0.22		
27 May 2016 - Delhi		ECBC Update 20	016		89		

Roof ((Mandatory)
--------	-------------

	Composite	Hot and dry	Warm & humid	Temperate	Cold
	composite	not and ary	Indinia	Temperate	
ECBC 2007 8 hours	0.40	0.40	0.40	0.40	0.40
ECBC 2007 24 hours	0.26	0.26	0.26	0.40	0.26
ECBC 2016 Day time	0.30	0.30	0.30	0.30	0.28
School building < 10,000 m ²	0.54	0.54	0.54	0.54	0.30
EE building	0.25	0.25	0.25	0.25	0.20
SEE Building	0.18	0.18	0.18	0.18	0.18
ECBC 2016 24 hours	0.30	0.30	0.30	0.30	0.28
Hospitality buildings	0.19	0.19	0.19	0.30	0.19
EE building	0.20	0.20	0.20	0.20	0.20
SEE Building	0.18	0.18	0.18	0.18	0.18
27 May 2016 - Delhi		ECBC Update 20			90

Glazi	Glazing (Prescriptive)							
WWR	Composite 40%	Hot and dry 40%	Warm & humid 40%	Temperate 40%	Cold 40%			
ECBC 2007 standard	U - 3.3 SHGC - 0.25 VLT - 0.2	U - 3.3 SHGC - 0.25 VLT - 0.2	U - 3.3 SHGC - 0.25 VLT - 0.2	U - 6.9 SHGC - 0.40 VLT - 0.2	U – 3.3 SHGC - 0.51 VLT - 0.2			
Proposed	U - 3.3 SHGC _{non north} - 0.27 SHGC _{north} - 0.5 VLT - 0.27	U - 3.3 SHGC _{non north} - 0.27 SHGC _{north} - 0.5 VLT - 0.27	U - 3.3 SHGC _{non north} - 0.27 SHGC _{north} - 0.5 VLT - 0.27	U - 3.3 SHGC _{non north} - 0.27 SHGC _{north} - 0.5 VLT - 0.27	U – 2.8 SHGC _{all} - 0.62 VLT - 0.27			
Meet all selectivit SHGC _{nort} same as		equirements of o <u>r EE buildings</u> a cable for latitud		ude < 15°, SHG shGC value				

					28 °N	N					
	Box Fra				Overh				Fin		
0.25	0.5	0.75	1	0.25	0.5	0.75	1	0.25	0.5	0.75	
1.25	1.47	1.66	1.81	1.09	1.18	1.25	1.30	1.13	1.22	1.30	1.3
1.37	1.85	2.37	3.37	1.21	1.45	1.74	2.06	1.11	1.20	1.27	1.3
1.58	2.47	3.62	4.63	1.28	1.59	1.95	2.26	1.18	1.35	1.46	1.5
1.47	1.86	2.25	2.57	1.17	1.35	1.48	1.75	1.21	1.34	1.55	1.6
1.47	2.25	2.90	3.68	1.26	1.60	1.94	2.19	1.14	1.27	1.35	1.4
SHGC	0.25 (say)				- 8 °	J					
	Roy Era	mo							Ein		-
0.25			1	0.25			1	0.25			
0.39	0.62	0.90	1	0.32	0.40	0.49	0.57	0.29	0.34	0.36	0.3
0.37	0.56	0.72	0.92	0.31	0.40	0.49	0.55	0.28	0.32	0.34	0.3
0.35	0.56	0.78	1	0.31	0.38	0.49	0.53	0.29	0.33	0.34	0.3
or latiti	ude <u>1</u>	3 °N i	s also	o add	ed in	ECBC					
	1.37 1.58 1.47 1.47 SHGC 0.25 0.39 0.37 0.35	1.37 1.85 1.58 2.47 1.47 1.86 1.47 2.25 SHGC (say) SHGC 0.55 0.39 0.62 0.37 0.56 0.35 0.56	1.37 1.85 2.37 1.58 2.47 3.62 1.47 1.86 2.25 1.47 2.25 2.90 0.25 (say)	1.37 1.85 2.37 3.37 1.58 2.47 3.62 4.63 1.47 1.86 2.25 2.57 1.47 2.25 2.90 3.68 O.25 SHGC (say) Box Frame 0.25 0.5 0.75 0.39 0.62 0.90 1 0.37 0.56 0.72 0.92 0.35 0.56 0.78 1	1.37 1.85 2.37 3.37 1.21 1.58 2.47 3.62 4.63 1.28 1.47 1.86 2.25 2.57 1.17 1.47 2.25 2.90 3.68 1.26 SHGC (say) BOX Frame 0.25 0.5 0.75 1 0.25 0.39 0.62 0.90 1 0.32 0.37 0.56 0.72 0.92 0.31 0.35 0.56 0.78 1 0.31	1.37 1.85 2.37 3.37 1.21 1.45 1.58 2.47 3.62 4.63 1.28 1.59 1.47 1.86 2.25 2.57 1.17 1.35 1.47 2.25 2.90 3.68 1.26 1.60 SHGC (say)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.37 1.85 2.37 3.37 1.21 1.45 1.74 2.06 1.58 2.47 3.62 4.63 1.28 1.59 1.95 2.26 1.47 1.86 2.25 2.57 1.17 1.35 1.48 1.75 1.47 2.25 2.90 3.68 1.26 1.60 1.94 2.19 O.25 SHGC (say)	1.37 1.85 2.37 3.37 1.21 1.45 1.74 2.06 1.11 1.58 2.47 3.62 4.63 1.28 1.59 1.95 2.26 1.18 1.47 1.86 2.25 2.57 1.17 1.35 1.48 1.75 1.21 1.47 1.86 2.25 2.57 1.17 1.35 1.48 1.75 1.21 1.47 2.25 2.90 3.68 1.26 1.60 1.94 2.19 1.14 SHGC 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 SHGC 0.39 0.62 0.90 1 0.32 0.40 0.49 0.57 0.29 0.37 0.56 0.72 0.92 0.31 0.40 0.49 0.55 0.28 0.35 0.56 0.78 1 0.31 0.38 0.49 0.53 0.29	1.37 1.85 2.37 3.37 1.21 1.45 1.74 2.06 1.11 1.20 1.58 2.47 3.62 4.63 1.28 1.59 1.95 2.26 1.18 1.35 1.47 1.86 2.25 2.57 1.17 1.35 1.48 1.75 1.21 1.34 1.47 2.25 2.90 3.68 1.26 1.60 1.94 2.19 1.14 1.27 SHGC 0.25 (say) SHGC 0.27 1.14 1.27 SHGC 0.25 0.5 0.75 1 0.25 0.5 0.75 1 0.25 0.5 Overhare Fin Overhare 5 0.55 0.75 1 0.25 0.5 0.39 0.62 0.90 1 0.32 0.40 0.49 0.55 0.28 0.32 0.35 0.56 0.78 1 0.31	1.37 1.85 2.37 3.37 1.21 1.45 1.74 2.06 1.11 1.20 1.27 1.58 2.47 3.62 4.63 1.28 1.59 1.95 2.26 1.18 1.35 1.46 1.47 1.86 2.25 2.57 1.17 1.35 1.48 1.75 1.21 1.34 1.55 1.47 2.25 2.90 3.68 1.26 1.60 1.94 2.19 1.14 1.27 1.35 SHGC 0.25 0.5 0.75 1.60 1.94 2.19 1.14 1.27 1.35 SHGC Sex Frame Overhage Fin 0.25 0.5 0.75 1 0.25 0.5 0.75 0.39 0.62 0.90 1 0.32 0.40 0.49 0.57 0.29 0.34 0.36 0.37 0.56 0.72 0.92 0.31 0.40 0.49 0.53 0.29 0.33 0.34 0.35 0.56

U value requirement for shaded buildings (Prescriptive)

				U value (W/m2K)				
	Climate zone	Orientation	SHGC	Shading PF ≥ 0.4				
Day time buildings and naturally ventilated buildings	All except cold climate	Non North	0.27	5.0				
Rest all categories as per the	previous tables							
Still under the review of Working GroupKey discussion points								
✓ Applicability								
✓ Pros and Cons	✓ Pros and Cons							
\checkmark Comments on the	proposed cc	oncept						
27 May 2016 - Delhi	ECBC Up	date 2016		94				

Daylighting requirement (Mandatory)							
Daylighting requireme	nt (manual or simulation)	% above grade area meeting UDI requirem for 90% of the in an year	the ent				
	< 3 storey building (above gra	ide)	40%				
All buildings except*	> 3 storey building (above gra	ide)	45%				
* Resort	All type		45%				
*Shopping malls/ complex	All type		10%				
For manual approach, day	EE approved software shall be light extent to be marked/ es stimate the final percentage a	stimated on					
27 May 2016 - Delhi	ECBC Update 2016		95				

Manual approach for daylighting compliance									
Day lig	Day lighting penetration potential – Manual approach for vertical fenestration (n X head height, n is as per the table below)								
			North	South/ East	West	North	South/ East	West	
	Window type	Shading		VLT < 0.3			VLT ≥ 0.3		
Delhi	All window	No Shading	1.4	1.0	0.5	1.5	1.1	0.7	
Chennai	types	NO Shaung	1.5	1.3	0.6	1.6	1.5	0.8	
			No	on West	West	No	n West	West	
	window type	Shading		VLT < 0.3			VLT ≥ 0.3		
All lattitude	Vision window	All shading		1.5	1.1	1.8		1.5	
types	Clerestorey	types with PF>0.4		1.8	1.6		2.1	1.8	
27 May	v 2016 - Delhi	E	ECBC Upda	te 2016				97	

SHGC values for different orientations

- 1. The SHGC recommendation of 0.27 for other orientation, except south orientation, could be relaxed.
- 2. Estimate the trend line equation for each orientation
- Equate the energy consumption of south orientation with 0.27 SHGC with other orientation, estimate the equivalent SHGC for N/ E/ W orientation

SEF table for 28 °N (Similar for other latitude degrees)												
						28 °N	1					
		Box Fra	ime			Overh	lang			Fin		
Projection Factor	0.25	0.5	0.75	1	0.25	0.5	0.75	1	0.25	0.5	0.75	1
North	1.25	1.47	1.66	1.81	1.09	1.18	1.25	1.30	1.13	1.22	1.30	1.36
East/ West	1.37	1.85	2.37	3.37	1.21	1.45	1.74	2.06	1.11	1.20	1.27	1.33
South	1.58	2.47	3.62	4.63	1.28	1.59	1.95	2.26	1.18	1.35	1.46	1.55
North-East/ North-West	1.47	1.86	2.25	2.57	1.17	1.35	1.48	1.75	1.21	1.34	1.55	1.69
South-East/ South-West	1.47	2.25	2.90	3.68	1.26	1.60	1.94	2.19	1.14	1.27	1.35	1.44
Example	SHGC	0.25 (say)										
						28 °N	1					
		Box Fra	ime			Overh	ang			Fin		
	0.25	0.5	0.75	1	0.25	0.5	0.75	1	0.25	0.5	0.75	1
South	0.39	0.62	0.90	1	0.32	0.40	0.49	0.57	0.29	0.34	0.36	0.39
South-East	0.37	0.56	0.72	0.92	0.31	0.40	0.49	0.55	0.28	0.32	0.34	0.36
South-West	0.35	0.56	0.78	1	0.31	0.38	0.49	0.53	0.29	0.33	0.34	0.36
Similar table for latitude 13 °N will be added												
27 May 2016 -	Delhi			EC	BC Updat	e 2016						118

U value exe	emption for sha	ded build	lings	
	Climate zone	Orientation	SHGC	U value (W/m2K) Shading PF ≥ 0.4
Day time buildings and naturally ventilated buildings	All except cold climate	Non North	0.27	5.0
27 May 2016 - Del	lhi ECBC I	Jpdate 2016		119

Useful Daylight Illuminance (UDI)

- UDI metric bins hourly time values based upon three illumination ranges, 0-100 lux, 100-2000 lux, and over 2000 lux. It provides full credit only to values between 100 lux and 2,000 lux for at least 90% of the time.
- 220 simulations were done to document the extent possible with different façade combinations in each orientation for 2 latitudes. The results for useful daylight extent for south orientation in Chennai is shown in next few slides

<section-header><section-header><section-header><text><figure><figure>

Manual approach for daylighting compliance								
Day lighting penetration potential - manual for vertical fenestration (n X head height, n is as per the table)								
		North	South/ East	West	North	South/ East	West	
Window type Shading				VLT < 0.3			VLT ≥ 0.3	
Delhi	All window	Il window		1.0	0.5	1.5	1.2	0.8
Chennai	types	No Shading	1.5	1.3	0.6	1.6	1.5	1.0
			No	on West	West	No	on West	West
	window type	Shading		VLT < 0.3			VLT ≥ 0.3	
All lattitude	Vision window	All shading		1.5	1.1		1.8	1.5
types	Clerestorey	rey types with PF>0.4		1.8	1.6		2.1	1.8
27 May	/ 2016 - Delhi	E	CBC Upda	te 2016				125

Cool roof (Mandatory)

- Roofs with slopes less than 20 degrees shall have an initial solar reflectance of no less than 0.7 and an initial emittance no less than 0.75.
- 2. Solar reflectance shall be determined in accordance with ASTM E903-96 and emittance shall be determined in accordance with ASTM E408-71 (RA 1996).

CBC Update 2016

Key findings from data collation survey

- 1. T12 (efficacy 45 lm/ watt) is least efficient and cheapest lamp type available in the market
- Technology like CFL, T5, and LED outperform T12 by 30%, 50%, and 120% respectively
- In a space like office, a reduction of nearly 40% and 60% in LPD is possible by replacing a T12 fixture with a T5 and LED respectively.

PACE-D TA program 27 May 2016 - Delhi CBC Update 2016

36

LCC Estimation for each	lamp type
-------------------------	-----------

Recommenda	ations												
Recommendations		CFL L3 - CFL											
									Simple				
				Annual Energy	Savings above		Add.		pay	NPV of			
		Total cost (Rs/	LPD	used (9 hours)	baseline (kwh/	Money saved	cost	Cost to save	back	savings			
	-	m2) 🚽	(W/m -	(kWh/m2) -	m2) 🚽	every year 🗸	(Rs/m: -	per unit 👻	(yrs) –	(Rs./m			
Office													
	Enclosed	51.45	15.3	32.06	-5.51	-56.76	35	-6.30	-0.61	-260			
	Open Plan	51.45	15.3	32.06	-5.51	-56.76	35	-6.30	-0.61	-260			
	Restrooms	19.29	5.7			101.08	11	1.12		463			
Stairway		18.37				32.75	9	2.88		150			
Storage		22.97	6.8			51.96	16	3.09	0.30	238			
Workshop		73.50				3.42	56	168.49	16.34	16			
_	Service/Repair	22.97	6.8	14.31	2.56	26.44	12	4.80	0.47	121			
Bank/Office													
	anking Activity Area	61.25	18.2	38.16	-1.94	-19.96	47	-24.49	-2.38	-91			
Convention (
	Audience Seating	22.97				26.44	12	4.80					
-	Exhibit Space	45.93	13.7	28.62	2.88	29.68	-1	-0.36	-0.03	136			
	27 May 2016 - I	Delhi		EC	BC Update 201					138			

		Office							
Built up Area (m²)	20,000								
Form	Rectangle								
Aspect Ratio	1.8								
Number of Floors	3								
Number of Basement	2								
Space Distribution (%)		ECBC 2007	ECBC 2016	EE Buildings	SEE buildings				
Office Space	80		10.0)					
Circulation	5		7.1						
Reception and Lobby	5		9.1	L					
Services	10		6.8	3					
Total	100	10.8	9.5	5 7.6	5.0				
Percentage reduction			12.1%	6 29.5%	53.1%				
			date 2016						

LPD recommendations for Building area method

LPD comparison as	ner whol	o building	area meth	od (W/m	2)
	ECBC 2007	ECBC		EE	SEE
Office Building	10.8	9.5	12.1%	7.6	5.0
Hospitals	12.9	9.7	25%	7.8	4.9
Hotels	10.8	9.5	12%	7.6	4.8
Shopping Mall	16.1	14.1	12.5%	11.3	7.0
University and Schools	12.9	11.2	13%	9.0	6.0
Library	14	12.2	13%	9.8	6.1
Dining: bar lounge/leisure	14	12.2	13%	9.8	6.1
Dining: cafeteria/fast food	15.1	11.5	24%	9.2	5.8
Dining: family	17.2	10.9	37%	8.7	5.5
Dormitory	10.8	9.1	16%	7.3	4.6
Fire station	10.8	9.7	10%	7.8	4.9
Gymnasium	11.8	10	15%	8.0	5.0
Manufacturing facility	14	12	14%	9.6	6.0
27 May 2016 - Delhi		ECBC Up	date 2016		

LPD comparis	on as per	whole bui	Iding area	method (W/m2)	
	ECBC	ECBC	%	EE	SEE	ASHRAE
	2007	2016	reduction	Building	Building	90.1 – 10
Motion picture theater	12.9	9.43	27%	7.5	4.7	8.9
Museum	11.8	10.2	14%	8.2	5.1	17.2
Post office	11.8	10.5	11%	8.4	5.3	9.4
Religious building	14	12	14%	9.6	6.0	10.8
Sports arena	11.8	9.7	18%	7.8	4.9	8.4
Transportation	10.8	9.2	15%	7.4	4.6	8.3
Warehouse	8.6	7.08	18%	5.7	3.5	7.1
Performing arts theater	17.2	16.3	5%	13.0	8.2	15.0
Police station	10.8	9.9	8%	7.9	5.0	10.3
Workshop	15.1	14.1	7%	11.3	7.1	12.9
Automotive facility	9.7	9	7%	7.2	4.5	8.8
Convention center	12.9	12.5	3%	10.0	6.3	19.4
Parking garage	3.2	3	6%	2.4	1.5	2.7
27 May 2016 - Delhi		ECBC Upo	date 2016			149

LPD recommendations for Building area method

Offices – space by space method (W/m2)

l amp category	NBC standard	NBC Lux (Avg)	ASHRA E (lux)		ECBC 2007	ECBC 2016	% reduction	EE buildings (20% efficient)	SEE buildings (50% efficient)
Enclosed	300-500-750	400	400	11.9	11.8	10.0	15%	8.6	5.4
Open Plan	300-500-750	400	400	10.5	11.8	10.0	15%	8.6	5.4
Banking Activity Area	300-500-750	400	400	14.8	16.1	12.6	22%	9.3	5.8
Conference/Meeting	200-300-500	300	400	13.2	14.0	11.5	18%	9.2	5.7
For Elevator	150-200-300	200	215	6.9		9.1	N/A	7.3	4.6
Corridor/Transition	70-150	100	50	7.1	5.4	7.1	N/A	3.6	2.3
Restrooms	100-150-200	200	300	10.5	9.7	7.7	21%	6.1	3.8
Stairway	50-100-150	100	50	7.4	6.5	5.5	16%	4.4	2.7
Storage	50-100-150	100	100	6.8	8.6	6.8	21%	5.4	3.4
Electrical/Mechanical	50-100-150	100	215	10.2	10.1	7.1	30%	5.7	3.5
Workshop	200-300-500	400	400	17.1	20.5	17.1	17%	13.7	8.6
Service/Repair	100-150-200	150	200	7.2	7.5	6.8	9%	5.5	3.4
With similar a	pproach,	more	e than	150 spa	ices wil	ll be lis	sted		

CBC Update 2016

Controls scope in ECBC 2016 (Mandatory)

Space controls

- Independent controls for
- $\circ~$ Max 250m² if space <1000m² $\,$
- \circ Max 1000m² if space >1000m²
- Override the shutoff control for max 2 hours
- Readily accessible

Mandatory for buildings > 20,000 sqm – discussion point

Automatic Lighting Shutoff

- Automatic control devises for Office spaces > 300 m²
 - Schedule based, for max 2500 m² and one floor
- Spaces > 25 m^2 Occupancy
 - Conference rooms
 - Classrooms, laboratories
 - Storage spaces > 15 m²
 - $\quad \text{Hotel public toilets >25} \ m^2$

Hotel and hospital corridors
 Turns off within 15 mins, for only
 95% light of the space

Controls scope in ECBC 2016 (Mandatory for all buildings)

Exterior lighting controls

- Mandatory daylight sensor or time switch
- For all universities, IT campus, and buildings with a BUA > 15,000 m²
 - avg light source efficacy of not less than 70 lumens/W
 - All landscaping lighting should have an Installed motion detector for 80% of the landscaping and street lighting (on/off or 50% dimmable)
- Façade lighting or signage have separate time switch

exceptions - emergency lighting,

Daylighting controls

- all corridors, lobby, and toilets
- manual or automatic control within 5 meters of a window
 - switch level set point adjusted btw 50 to 1000 lux
 - delay of >2 mins, and differential > than 50 lux
 - dimmed or stepped to 50% of total power
 - Over rides to daylighting sensor should not be allowed
- Incentive LPD adjustment factor of 20% is applicable, within the daylight zone, to any spaces if > 70% of space is having daylight

ECBC Upda Controls

153

EE and SEE buildings – controls requirement

- 1. Mandatory requirement of centralized system of lighting controls
 - a. Schedule based operation
 - b. Day light sensor controls
 - c. Dimmable controls (manual or automatic)

7 May 2016 - Delhi

ECBC Update 2016

Luminaire wattage

- a. Luminaire efficacy should be 0.7 or above
- b. If luminaire has a permanently installed ballast, the considered wattage of the system shall be the operating input wattage of overall system based on the manufacturer or laboratories
- c. If luminaire doesn't not have a permanently installed ballast, the considered wattage of the system shall be maximum labeled wattage of the luminaire
- d. Considered wattage of all other luminaire types shall be the specified wattage of the luminaire

May 2016 - Delhi

ECBC Update 2016

155

Exterior lighting (Mandatory)

Extension lighting and lighting	Deurentimite
Exterior lighting application	Power Limits
Building entrance (with canopy)	10 W/m² of canopied area
Building entrance (w/o canopy)	90 W/ linear m of door width
Buiding exit	60 W/lin m of door width
Building façade	5 W/m² of vertical façade area
Emergency signs, ATM kiosks, Security areas façade	1 W/m²
Parking areas (covered/ basement)	2.2 W/m ²
Driveways (covered/ basement)	3 W/m ²
Driveways and parking (open/ external)	1.6 W/m ²
Pedestrian walkways	2.0 W/m ²
Stairways	10.0 W/m ²
Landscaping	0.5 W/m²
Outdoor sales area	9.0 W/m²
Recommended value for EE and SI the ECBC 2016 recommendation	EE buildings are 20% and 50% efficient to ECBC Update 2016 150

Session 4

Comfort systems and Controls

l	Key Highligh	ts	
	Wider Scope	Additional equipment, Thermal comfort, and Ventilation	
	Ease of Compliance check	Concept of W/ ton was introduced in Fans, Pumps and Cooling towers	
	System Efficiency	System efficiency ensures design flexibility and innovation	
	Advance controls requirement	Wider scope of controls requirement, specific to space and building	70
	Low Energy Comfort System and Natural Ventilation	ECBC 2016 to include compliance path for low energy comfort systems as well as Natural Ventilations	
	Technology Independent Requirement	Recommendation for chillers are technology independent	
	27 May 2016 - Delhi	ECBC Update 2016	158

Comfort Systems and Controls – revised Scope

- Chillers:
 - Water/ air Cooled
- Unitary Air-Conditioners :
 - VRF system
 - Single/ Multi Spilt Unit
 - window AC
- Pumps
 - Chilled-Water Pump
 - Condenser Water Pump
 - Hot water pumps
- Air Distribution System :
 - AHU and FCUs
 - Fans Centrifugal/ Axial
- Cooling towers

• Boilers

- System efficiency
- Controls
- Natural Ventilation
- Set points
- Ducts and pipe insulation
- Heat recovery and economizers
- Low energy comfort systems

ECBC Update 2016

Air-conditioned building

Indoor Operative Temperature = (0.014 x outdoor temperature) + 24.53

- Where indoor operative temperature (°C) is neutral temperature & outdoor temperature is the 30-day outdoor running mean air temperature (°C).
- The 90 percent acceptability range for the adaptive models for conditioned buildings is ±1.0°C.

Delhi: Indoor Operative Temperature = (0.014 x 33.0)+ 24.53 = 24.99 °C

Note: Above equations are not applicable for outdoor running mean temperatures below 15°C.

ECBC Update 2016

		ECBC 2016	(MEPs.)	EE	SEE
	Equipment Class	Constant	VSD	СОР	COP
Air Cooled Chiller	<530 kW (<150 TR)	3.0	2.7	3.3	NA
	≥530 kW (≥150 TR)	3.0	2.7	3.3	NA
	<530 kW (<150 TR)	5.5	5.0	5.8	6.1
Water cooled	≥530 & <1050 kW (≥150 and <300 TR)	5.8	5.2	6.1	6.3
chiller	≥1050kW (≥ 300 TR)	6.1 (5.8)	5.5	6.3	6.5
	≥2110 kW (≥ 600 TR)	6.3	5.7	6.5	6.7

Chillers – ECBC 2016 Recommendation: Option 1

The values in small brackets () in water cooled chillers are screw chiller COPs for reference only.
 The COP of VSD compressor based chiller are 10% less of fixed speed chiller COP.
 Number of Air-cooled chiller can be restricted.

Chillers – ECBC 2016 Recommendation: Option 2

		ECBC 2016 (MEPs)	EE building	SEE building
	Equipment Class	СОР	СОР	СОР
Air Cooled Chiller with condenser	<530 kW (<150 TR)	3.0	3.3	NA
electrical	≥530 kW (≥150 TR)	3.0	3.3	NA
Centrifugal Water Cooled	< 530 kW (<150 TR)	5.0	5.6	5.68
Centrifugal Water Cooled	≥530 & <1050 kW (≥150 and <300 TR)	5.55	5.8	6.23
Centrifugal Water Cooled chillers	≥1050kW (≥ 300 TR)	6.1	6.3	6.48
water cooled centrifugal	≥2100 kW ≥ 600 TR	6.2	6.5	6.7
Reciprocating Compressor, Water Cooled Chiller	all sizes	4.2	4.7	5.4
Rotary Screw and Scroll Compressor, Water Cooled	<530 kW (<150 TR)	4.7	5.0	5.8
Rotary Screw and Scroll Compressor, Water Cooled	≥530 & <1050 kW (≥150 and <300 TR)	5.4	5.5	6.3
Rotary Screw and Scroll Compressor, Water Cooled 27 May 2016 - Delhi	≥ 1050 kW (≥ 300 TR) _{pdate 20}	5.75	6.0	6.45

Fans – recor	nmendations	(Pres	script	tive)						
	Fan efficiencies									
System type	Fan Type	Mecha	nical Eff	iciency	Mot	or Effici	ency			
		ECBC	EE	SEE	ECBC	EE	SEE			
Central system /	Supply	60%	65%	70%	IE 2	IE 3	IE 4			
Duct able VRVs	Return and Exhaust	55%	60%	65%	IE 2	IE 3	IE 4			
Fan efficiency rec kW.	juirement applicable	e to mo	otor po	wer ex	ceedin	g 0.37	,			
Discussion point - recommended?	different efficiency	for su	oply &	return	fans					
27 May 2016 - Delh	i ECBC	Update 201	16				171			

Pumps – recommendations (Prescriptive)							
ECBC 2016 - 1		ty (Watt) per Installe I chilled water systen	d cooling capacity at a າ				
System type	ECBC 2016	EE building	SEE building				
Chilled water Pump (P + S)	18.2 W/ kW _r (64 W/ ton _r) with VSD	16.9 W/ kW _r (59.5 W/ ton _r) with VSD	14.9 W/ kW _r (52.5 W/ ton _r) with VSD				
Condenser water pump	17.7 W/ kW _r (62.3 W/ ton _r)	16.5 W/ kW _r (58.1 W/ ton _r)	14.6 W/ kW _r (51.2 W/ ton _r)				
	With 70% efficiency	With 75% efficiency	With 85% efficient pumps				
	ements for district c ciency requirement c						
27 May 201	6 - Delhi	ECBC Update 2016	174				

Cooling towers (Prescriptive)

Rating Condition	ECBC 2016
95°F/ 35°C entering water 85°F/ 29°C leaving water 75°F/ 24°C wb outdoor air	0.017 kW/kW _r (0.062 kW/ton _c) 0.31 kW/ L/s (≥38.2 gpm/ hp)
95°F/ 35°C entering water 85°F/ 29°C leaving water 75°F/ 24°C wb outdoor air	0.034 kW/kW _r (0.12 kW/ton _c) (0.59 kW/ L/s) ≥20.0 gpm/ hp
	95°F/ 35°C entering water 85°F/ 29°C leaving water 75°F/ 24°C wb outdoor air 95°F/ 35°C entering water 85°F/ 29°C leaving water

ECBC Update 2016

175

Boilers (Prescriptive)

Equipment type Sub categor	y Size category	Minimum efficiency	
	<88 kW	80% AFUE	
Gas fired	>=88 kW and <=732 kW	75% Et	
Boilers, hot	>732 kW	80% Ec	
water	<88 kW	80% AFUE	
Oil fired	>=88 kW and <=732 kW	78% Et	
	>732 kW	83 % Ec	
AFUE - annual fuel utilization e	fficiency		
Ec - combustion efficiency (100	% less flue losses)		
Et - Thermal efficiency			
27 May 2016 - Delhi	ECBC Update 2016		

Unitary, Split and Packaged Air conditioners

Cooling Capacity		ECBC 2007 - COP		ECBC 2016		EE Buildings		SEE Buildings		
Watts	TR of Refri	kWr	Water Cooled	Air Cooled	Water Cooled	Air Cooled	Water Cooled	Air Cooled	Water Cooled	Air Cooled
≤10,500	≤ 3	≤ 10.5	NA	NA	NA	BEE 3 Star	NA	BEE 4 Star	NA	BEE 5 Star
> 10,500	> 3	>10.5	2.67	2.11	3.55	3.28				
17,500	5	17.5	2.92	2.50	3.55	3.28				
26,250	7.5	26.25	2.92	2.63	3.55	3.28				
35,000	10	35	3.04	2.59	3.55	3.28				
52,000	15	52.5	3.06	2.60	3.55	3.28				
	27 May 20	16 - Delhi			ECBC Upo	late 2016				

Variable Refrigerant Flow Air Conditioner– ASHRAE 90.1 2010

Equipment type	Size category	Minimum Efficiency (2010)
VRF Air Conditioners, Air cooled	<19 kW	3.28 COP
	>=19 kW and < 40 kW	3.29 COP
	>= 40 kW and < 70 kW	3.26 COP
	>= 70 kW	3.02 COP

□ BEE is under process to develop the test standards on VRF based on Indian conditions

- \square ECBC 2016 will refer to the conclusions of this study for mandatory requirements
- □ Until the study is under process, ASHRAE 90.1 2010's COP levels for VRF will be referred for all analysis

27 May 2016 - Del

ECBC Update 2016

Precision Air Conditioner units (Mandatory - Applicable to buildings with BUA> 20,000 sqm)

	Net Sensible Cooling	Minimum SCOP-127 ^b		
Equipment type	Capacity ^a	Downflow	Upflow	
	<19 kW	2.20	2.09	
Air Conditioners, Air cooled	Capacity ^a Downflow <19 kW	1.99		
	>=70 kW	Downflow 2.20 2.10 1.90 2.60	1.79	
	<19 kW	2.60	2.49	
Air Conditioners, Water cooled	>=19 kW and < 70 kW	2.50	2.39	
	>=70 kW	2.40	2.29	

a. Net Sensible cooling capacity = Total gross cooling capacity - latent cooling capacity - Fan power
 b. Sensible coefficient of performance (SCOP-127): A ratio calculated by dividing the net sensible cooling capacity in watts by the total power input in watts (excluding reheater and dehumidifier) at conditioned defined in ASHRAE standard 127)

 $\hfill\square$ This is under the review of WG meeting

Discussion points - comments on inclusion of the it in the code

)3 Feb 2016 - Bengaluru

ECBC Update 2016

System efficiency for building cooling system (Prescriptive)

Minimum system efficiency (total installed equipment per cooling capacity kW/ kW_r)								
System type	Peak building cooling load (kW)							
	<3516 kW (1,000 TR)	≥ 3516 kW (1,000 TR)						
Central chilled water plant (Water cooled)	0.21 (0.75 kW/ ton _r)	0. 20 (0.70 kW/ ton _r)						
 Central water plant includes chillers, chilled water and condenser water pumps and cooling tower. Values of EE building and super EE buildings will be derived based on the finalized ECBC 2016 recommendations 								
27 May 2016 - Delhi ECBC I	Jpdate 2016	184						

System balancing (Mandatory)

a. Requires written balance report for a HVAC system if total conditioned area exceeding 500 m²

Discussion point - Written balancing report for HVAC system by 3rd party should be required if total conditioned area exceeding 5000 m³

- a. Air system balancing
 - To first minimize throttling losses
 - If fan system power is greater than 0.75 kW, fan speed shall be adjusted to meet design flow conditions
- b. Hydronic system balancing
 - To first minimize throttling losses
 - Trim pump impeller or adjust pump speed to meet design flow conditions

(if pump motor < 7.5 kW) ECBC Update 2016

Automatic Demand Shed Controls (EE & SEE building)

- a. Applicable for HVAC systems with DDC to the Zone level for non critical zones
- b. remotely setup the operating temp set points by 4 degrees by centralized program
- c. programmed to provide an adjustable rate of change for the temperature setup and reset
- d. The controls shall have features like Disabled, Manual Control, Automatic Demand shed control
- e. 20,000 sqm slab for BMS requirement basic controls and hair handlers

Supply Air Temperature Reset (EE & SEE)

- Multi-zone HVAC systems must include controls that automatically reset the supply-air temperature in response to building loads, or to outdoor air temperature.
- Controls shall reset the supply air temperature at least 25% of the difference between the design supply air temperature and the design room air temperature.

Exception:

Climate zone - Warm-humid

ECBC Update 20

Chilled Water Temperature Reset (EE & SEE)

 Chilled water system with a design capacity exceeding 87.5 kW (25 TR) supplying chilled water to comfort conditioning systems

 a. Shall include controls that automatically reset supply water temperatures by representative building loads (including return water temperature) or by outdoor air temperature.

Exception:

- Where the supply temperature reset controls causes improper operation of equipment.
- Hydronic systems that uses variable flow to reduce pumping energy

ECBC Update 2016

VAV fan control (SEE building)

a. The fan shall have controls or devices that will result in fan motor demand of no more than 30 % of their design wattage at 50 % of design airflow when static pressure set point equals one-third of the total design static pressure, based on manufacturer's certified fan data.

Air side economizer control (SEE building)

- Economizer dampers shall be sequenced with the mechanical cooling equipment and shall not be controlled by only mixed air temperature.
- Air economizers shall be capable of automatically reducing outdoor air intake to the design minimum outdoor air quantity when outdoor air intake will no longer reduce cooling energy usage.
 - ✓ Specify High-limit shutoff

27 May 2016 - Delhi

CBC Update 201

Pipe Insulation with Minimum R-value (m ² ·K/W) Steam, steam condensate, hot water,								
domestic water, and cooling system like chilled water, brine, and refrigerant)								
Heating System	ECBC 2007	ECBC 2016		EE Building		SEE building		
Operating Temp/								
pipe size (mm)	All size	< 40	>= 40	< 40	>=40	< 40	>=40	
94°C to 121°C	0.74	0.9	1.2	1.1	1.3	1.5	1.5	
60°C to 94°C	0.74	0.7	0.7	0.8	0.8	1.0	1.3	
40°C to 60°C	0.35	0.4	0.7	0.5	0.9	0.7	1.1	
Cooling System	ECBC							
Operating Temp/								
pipe size (mm)	All size	< 25	40-100	< 25	40-100	< 25	40-100	
4.5°C to 15°C	0.35	0.4	0.7	0.5	0.9	0.7	1.2	
< 4.5°C	0.35	0.9	1.2	1.1	1.3	1.5	1.5	
Refrigerant Piping	ECBC							
Split System		< 25	40-100	< 25	40-100	< 25	40-100	
4.5°C to 15°C	0.35	0.4	0.7	0.5	0.9	0.4	0.7	
< 4.5°C	0.35	0.9	1.2	1.1	1.3	1.5	1.5	
27 May 2016 - Delhi		ECBC U	odate 2016					

Pipe insulation (Mandatory for all hotels, all hospitals, and buildings with BUA >10,000 m²)

Pipe insulation (Conti..)

a. For any pipe located in partition within a conditioned space or buried,
a. a reduction in R value by 0.2 shall be permitted but not less than R - 0.4
b. For any pipe located in partition outside a building with a direct exposure to external atmosphere, direct sun, shall require
a. an additional R value of 0.2 over and above the requirement stated in the table in previous slide
c. For building in temperate climate zone,
a. a reduction in R value by 0.2 shall be permitted compared to values in table in previous slide but not less than R - 0.4

Duct insulation (Mandatory for all hotels, all hospitals, and buildings with BUA>10,000 m²)

	ECBC 2007		ECBC 2016 (Min		EE building			
		Return	performance) Supply Return		· · · · · ·		SEE building Supply Return	
Duct Location								ducts
Exterior	R-1.4	R-0.6	R -1.4	R – 0.6	R_1 /	R – 0.6	R_1 /	R – 0.6
Unconditioned	N-T' 4	N-0.0	N -1.4	N - 0.0	N -T'4	N – 0.0	N -1.4	N - 0.0
Space	R- 0.6	None	R -0.6	None	R -0.6	None	R -0.6	None
Buried	R- 0.6	None	R -0.6	None	R -0.6	None	R -0.6	None

Required Insulation (R-values in m²·K/W)

27 May 2016 - Delhi

ECBC Update 2016

- 1. permanent openings, windows, doors, louvers, etc
- 2. Targeted area should be no more than 14 m from the operable wall or roof openings
- 3. Unobstructed openable area of which is not less than 5% of the conditioned floor area of the naturally ventilated space.
- 4. All installed ceiling fans should be of minimum 3 star rated
- 5. Openable area shall be based on the free unobstructed area.

EXCEPTIONs: Naturally ventilated spaces in hotel/motel guest rooms shall be open to and within 8 m of operable wall or roof openings to the outdoors.

Ventilation

Demand Control Ventilation. Applicable if:

a. Occupant density >= 40 people per 100 m²;

Exception 1: Classrooms, call centers, continuously occupied office spaces, healthcare facilities and medical buildings, and public areas of social services buildings

Exception 2: Spaces that have processes or operations that generate dusts, fumes, mists, vapors, or gases and are not provided with local exhaust ventilation, such as indoor operation of internal combustion engines or areas designated for unvented food service preparation, or beauty salons shall not install demand control ventilation.

Exception 3: Spaces with an area of less than 15 m², or a design occupancy of less than 10 people per NBC standard recommendations.

' May 2016 - Delhi

ECBC Update 2016

Other low energy comfort systems

- 1. Evaporative Cooling
- 2. Desiccant cooling system
- 3. Solar air conditioning
- 4. Tri- generation (Waste to heat)
- 5. Radiant cooling system
- 6. Ground source heat pump
- 7. Adiabatic cooling system

Discussion point -

Incentive - Building installing any of the above low energy comfort system would be exempted from the mandatory requirements of comfort systems and control section ECBC Update 2016

Session 6

Electrical and Renewable

Electrical and Renewable – revised scope (All mandatory – discussion points)

- Equipment efficiency and design
 - a. Transformers
 - b. Motors
 - c. Power Factor
 - d. Electrical Metering and Monitoring
 - e. Electrical Distribution Systems
 - f. DG sets
 - g. Voltage Unbalancing
 - h. Harmonic Distortion
 - i. Size of Neutral Conductors
 - j. Uninterruptible Power Supply

ECBC Update 20

- Renewable Energy
- Hot water
 - a. Solar
 - b. Other hot water equipment

Transformers

Power Factor Correction

All electricity supplies exceeding 100 A, 3 phases shall maintain their power factor range at the point of connection as below:

ECBC 2016 recommendation level

- ECBC 2016 (MEPs) 0.97
 Energy efficient (EE) building 0.98
- Super EE building 0.99

What should be recommended value for True RMS power

factor? – Discussion point (0.97/ 0.95)

ECBC Update 201

Sub metering						
	120 kVA to 250 kVA	250 kVA to 600 kVA	more than 600 kVA			
Minimum requirement for metering of electrical load						
Energy kWh	Required	Required	Required			
Demand kVA	Required	Required	Required			
Total power factor	Required	Required	Required			
Minimum re	Minimum requirement for seperation of Electrical Load					
HVAC system and components	Required	Required	Required			
Lighting (interior and exterior)	Required	Required	Required			
Domestic hot water	Not required	Required	Required			
Plug loads	Not required	Required	Required			
Renewable power source	Required	Required	Required			
Mandatory requirement for building type over the requirement stated above						
Commercial mall/ retail	Façade lighting	Elevator, escalators, moving walks				
Offices	Data centers					
Hotels	Commercial kitchens					
In case of tenant based building, metering should be provided as per the above requirement at a location from where each tenant could attach the services.						
	ECBC Update 2016			224		

Voltage Unbalancing – Definition

In a three-phase system, the degree of voltage unbalance is expressed by the ratio (in per cent) between the RMS values of the negative sequence component and the positive sequence component of the voltage. This ratio may be approximated as:

Voltage unbalance (%) =

Maximum deviation from the average of the three–phase voltages x 100% average of the three–phase voltages

- ECBC 2016 will limit the voltage unbalance in distribution networks operating at 33kV and below.
- voltage unbalance to be measured in relation to the negative phase sequence component of the supply voltage.
- The magnitude of the negative phase sequence component is within 2% of the positive phase sequence component then the unbalance is acceptable.
- This limit is to be taken for the combined affect of all new and existing loads at the point of common coupling

May 2016 - Delhi ECBC Update 2016

229

unbalanced three-phase loads or phase to phase loads may be evaluated by the following expression

VU (%) = $\frac{\sqrt{3} \times \text{negative phase sequence Component of the loads (A) x line voltage x 100%}}{\text{Three-phase short circuit level at exit point (MVA)}}$

load connected only between two phases may be calculated as

 $VU (\%) = \frac{\text{single phase load (MVA) x 100\%}}{\text{three phase short circuit level (MVA) at that point}}$

- Measurement Interval = 10 mins
- Monitoring Period = 1 week
- Acceptance Percentage = 95%

CBC Update 201

Total Harmonic Distortion

- 1. Total Harmonic Distortion (THD)
- 2. Total Demand Distortion (TDD)

The ratio I_{sc}/I_{L} is the ratio of the short-circuit available at the point of common coupling (PCC), to the maximum fundamental load current.

ECBC Update 2016

Total Harmonic Distortion (THD)					
System Voltage at the PCC	THD Limit				
1. 400V	5%				
2. 6.6, 11 and 20kV	4%				
3. 22kV to 400kV	3%				
27 May 2016 - Delhi El	CBC Update 2016 233				

Total Demand Distortion						
Individual harmonic order (odd harmonics)						
1.	I _{sc} /I _L	TDD				
2.	<20*	5.0				
3.	20<50	8.0				
4.	50<100	12.0				
5.	100<1000	15.0				
6.	>1000	20.0				
Even harmonic are limited to 25% of the odd harmonic limits above.						
1.	1. Current distortions that result in a dc offset, e.g. half-wave converters are not allowed.					
2.	2. *All power generation equipment is limited to these values of distortion, regardless of act					
3.	3. Where					
• I _{sc} = maximum short-circuit current at PCC.						
 I_L = maximum demand load current (fundamental frequency component) at PCC 						
	27 May 2016 - Delhi	ECBC Update 2016	234			

Neutral Conductors

Comply with the prescribed requirement of National Electrical Code (latest version)

For a polyphase circuit in which imbalance may occur in normal service, through significant inequality of loading or of power factor in the various phases, or through the presence of significant harmonic currents in the various phases, the neutral conductor shall have a cross-sectional area adequate to afford compliance with permissible conductor operating temperature for the maximum current likely to flow in it.

' May 2016 - Delhi

ECBC Update 201

Renewable Energy Integration

- RE systems include technologies designed to capture solar, wind, geo-thermal, water, or bio based energy to satisfy onsite electric power demand.
- ECBC to limit itself to the onsite RE generation only.
 Purchase of RE certificate to be considered only after the concerned legislation is notified by the Center or the State Government

RE provisions for future installation (Mandatory)

All buildings applicable to ECBC 2016 will have mandatory provisions of future installation of renewable energy. Compliance requirement-

1. Minimum area - Dedicate a minimum area as RE zone

- For non-residential: Least of, area > 10 % of roof area or area required for the generation of energy equivalent to 1% of total peak demand or connected load
- Exceptions: If have solar hot water/ solar electric systems

2. Shading –

• No obstructions shall be located in the RE zone.

3. Main Electrical Service Panel

- shall have a minimum rating for amps
- shall have a reserved space to allow for the installation of a double pole circuit breaker for a future solar electric installation

27 May 2016 - Delhi ECBC Upd

Solar hot water

Solar water heating

- For facilities like hotels and hospitals with a centralized system
- If building area < 20,000 m², at least 20% of the design capacity.
- If building area > 20,000 m², at least 40% of the design capacity

Exception to above:

• Systems that use heat recovery for at least 40% of the design hot water capacity.

Equipment efficiency

- Solar water heater IS 13129 Part
- Gas Instantaneous Water heaters IS 15558
- Electric water heater IS 2082

27 May 2016 - Dell

ECBC Update 2016

123

ECBC 2016

- Supplementary heating system
 - Maximum heat recovery from hot discharge system like condensers of air conditioning units
 - Use of gas-fired heaters wherever gas is available
 - Electric heater as last resort
- Heat Traps
- Swimming pools
 - If heated to > 32° C (90° F), then minimum insulation value of R-4.1
 - Exception to above: Pools deriving over 60% of their energy from siterecovered energy or solar energy source.

May 2016 - Delhi ECBC Update 20

